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Abstract. A novel approach to the analysis of the gravitational well problem from the point of view of
a second quantized description is discussed. The second quantized formalism enables us to study the ef-
fect of time-space non-commutativity in the gravitational well scenario; this study is hitherto unavailable
in the literature. The corresponding first quantized theory reveals a leading order perturbation term of non-
commutative origin. The latest experimental findings are used to estimate an upper bound on the time-space
non-commutative parameter. Our results are found to be consistent with the order of magnitude estimations
of other NC parameters reported earlier.

PACS. 11.10.Nx; 03.65.Ta; 11.10.Ef

1 Introduction

The idea of non-commutative (NC) space-time where the
coordinates xµ satisfy the non-commutative algebra

[xµ, xν ] = iΘµν (1)

has gained prominence in the recent literature. Originally
mooted by Snyder in a different perspective [1, 2], this idea
has been revived in the recent past [3, 4], and field the-
ories defined over this NC space are currently subject to
very intense research [5]. A wide range of theories are be-
ing formally studied in a NC perspective, encompassing
various gauge theories [6–12], including gravity [13–21].
Apart from studying the formal aspects of the NC geom-
etry, certain possible phenomenological consequences have
also been investigated [22–35]. A part of the endeavor is
spent in finding the order of the NC parameter and in ex-
ploring its connection with observations [36–38].
A particular piece of the scenario is the quantum well

problem, which has emerged in recent GRANIT experi-
ments by Nesvizhevsky et al. [39–41], who detected the
quantum states of neutrons trapped in the earth’s gravita-
tional field. Their results have been used by Bertolami et
al. [42, 43] and Banerjee et al. [44] to set an upper bound
on the momentum space NC parameters. These works have
been done on the level of quantum mechanics (QM), where
non-commutativity is introduced by means of the phase
space variables. Naturally, non-commutativity in the time-
space sector cannot be accounted for in this picture, since
in QM as such, space and time could not be treated on
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an equal footing. Time-space non-commutativity, however,
has gained considerable interest in the current literature,
and the search for any possible upper bound on the time-
space NC parameter using recent experimental feedback is
very desirable.
The issue of time-space non-commutativity is worth

pursuing in its own right because of its deep connection
with such fundamental notions as unitarity and causality.
It was argued that the introduction of time-space non-
commutativity spoils unitarity [45, 46] or evencausality [47].
Much attention has been devoted in recent times to cir-
cumvent these difficulties in formulating theories with θ0i �=
0 [48–51]. In [52], it was shown in the context of the NC
Schwinger model in (1+1)-dimensions that, in a perturba-
tive approach, retaining terms up to first order in the NC
parameter does give physically meaningful results. There
are similar examples of other theories with time-space non-
commutativity in the literature [53–55], where unitarity is
preserved by an order by order perturbative approach.
In the present letter we shall study the effect of time-

space NC (if any) on the energy spectrum of a cold neu-
tron trapped in a gravitational quantum well by restricting
ourselves to a first order perturbative treatment. To intro-
duce time-space non-commutativity in this quantum well
scenario, a second quantized theory is required. We pro-
pose to discuss the NC quantum well problem reducing
it from a NC Schrödinger field theory. This is a reason-
able starting point, since single particle quantum mechan-
ics can be viewed as the one-particle sector of quantum
field theory in the very weakly coupled limit; in this case
the Schrödinger wave function essentially obeys the field
equations [56–58]. This allows us to examine the effect of
the whole sector of space-time non-commutativity in an
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effective non-commutative quantum mechanical (NCQM)
theory. We do not consider momentum space NC effects as
has been done by [42–44]. Our aim is to study the effect
of non-commutativity on the level of quantummechanics if
time-space non-commutativity is accounted for.
The organization of the letter is the following. In the

next section we consider a NC Schrödinger field interact-
ing with an external classical gravitational field. We show
that the canonical structure of the effective commutative
theory can be revived with suitable mass and field rescal-
ing. Both the Lagrangian and the Hamiltonian formulation
is discussed. Once the canonical form is obtained, we get
back to the first quantized level in Sect. 3. Here the ordi-
nary quantum mechanics of the gravitational well problem
is briefly reviewed, before we consider the effective NCQM
and work out the perturbed energy spectrum in three dif-
ferent approaches. Here, much in the spirit of [42, 44], we
use the experimental results of [39–41] to work out an es-
timation of the highest possible value of the time-space NC
parameter. In Sect. 4, we make a rough calculation to show
the consistency of our result with the estimations of other
NC parameters existing in the literature [42, 44]. We draw
our conclusions in Sect. 5.

2 The NC Schrödinger action

In this section we shall consider a NC field theory of a non-
relativistic system with a constant background interac-
tion. Evidently, the starting point is to write down the
NC Schrödinger action. Now, there are two standard ap-
proaches to carry out the analysis of NC field theories. One
can work in a certain Hilbert space that carries a represen-
tation of the basic NC algebra, and the fields are defined in
this Hilbert space by the Weyl–Wigner correspondence [5].
We choose to take the alternative approach, in which we
work in the deformed phase space with the ordinary prod-
uct replaced by the star product [52, 57, 59, 60]. In this
formalism, the fields are defined as functions of the phase
space variables, and the redefined product of the two fields
φ̂(x) and ψ̂(x) is given by

φ̂(x)� ψ̂(x) =
(
φ̂ � ψ̂

)
(x) = e

i
2θ
αβ∂α∂

′

β φ̂(x)ψ̂(x
′
)

∣∣∣∣
x
′
=x

.

(2)

In the star-product formalism the action for the NC
Schrödinger field ψ̂ coupled with the background gravita-
tional field reads

Ŝ =

∫
dxdydtψ̂† �

[
ih̄∂0+

h̄2

2m
∂i∂i−mgx̂

]
� ψ̂ . (3)

The quantities described above act on a system in the ver-
tical xy (i = 1, 2) plane, where the external gravitational
field is taken parallel to the x-direction. Under the � com-
position, the Moyal bracket for the coordinates is

[x̂µ, x̂ν ]� = iΘ
µν =

⎛
⎝
0 −η −η′

η 0 θ
η′ −θ 0

⎞
⎠ , (4)

where the µ, ν take the values 0, 1, 2. Spatial non-commu-
tativity is denoted by Θ12 = θ and non-commutativity
among time and the two spatial directions are denoted by
the parameters Θ10 = η and Θ20 = η′. With the hindsight
that any possible deformation in the ordinary theory due
to non-commutativity is expected to be of a small magni-
tude, we expand the star product and consider only the
first order correction terms, which considerably simplifies
the analysis.

2.1 First order equivalent commutative theory

Expanding the �-product to first order in the NC parame-
ters (4), we get

Ŝ =

∫
dxdydtψ†

[
ih̄

(
1−
1

2h̄
mgη

)
∂t+

h̄2

2m
∂2i ¸

−mgx−
i

2
mgθ∂y

]
ψ , (5)

where everything is put in terms of commutative variables,
and the NC effect is manifest by the presence of the θ and η
terms. Clearly, the standard form of the kinetic term of the
Schrödinger action is deformed, due to the time-space non-
commutativity. To make the matter simpler, we rescale the
field variable by

ψ �→ ψ̃ =

√(
1−
η

2h̄
mg
)
ψ , (6)

which gives the conventionally normalized kinetic term.
Such physically irrelevant rescalings have been done ear-
lier [38, 57]. Therefore, it becomes clear that it is ψ̃, rather
than ψ, that corresponds to the basic field variable in the
action (5). It is therefore desirable to re-express it in terms
of ψ̃ and to ensure that it is in the standard form in the first
pair of terms. We have

Ŝ =

∫
dxdydtψ̃†

×

[
ih̄∂t+

h̄2

2m̃
∂2i − m̃

(
1+
m̃gη

h̄

)
gx −

i

2
m̃gθ∂y

]
ψ̃ .

(7)

Note that the mass term has also been rescaled,

m̃=
(
1−
η

2h̄
mg
)
m, (8)

and we can interpret m̃ as the observable mass. A similar
charge rescaling of NC origin in the context of NC QED
was shown in [38]. The last term in (7) can be absorbed in
the term ∂2y by rewriting

∂y =

(
∂y−

iθ

2h̄2
m̃2g

)
, (9)

and the final effective NC Schrödinger action reads

Ŝ =

∫
dxdydtψ̃†

[
ih̄∂t+

h̄2

2m̃

(
∂2x+∂

2
y

)

− m̃gx−η

(
m̃2g2

h̄

)
x

]
ψ̃ . (10)
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The Lagrange equation of motion for the fundamental field
ψ̃(x) is

[
ih̄∂t+

h̄2

2m̃

(
∂2x+∂

2
y

)
− m̃gx−η

(
m̃2g2

h̄

)
x

]
ψ̃ = 0 . (11)

Note that owing to the field and mass redefinition (6) and
(8), everything but the last term takes the form of the stan-
dard Schrödinger field equation.

2.2 Hamiltonian analysis

We can also start with the commutative equivalent ac-
tion (5) and derive the field equation in a Hamiltonian
formalism. The advantage of the Hamiltonian analysis is
twofold. It gives us a suitable platform to look for the
proper canonical pair of fields, as well as a cross-check for
the field equations.
The canonical momenta corresponding to the field vari-

able ψ are

Πψ (x) = ih̄

(
1−
1

2h̄
mgη

)
ψ† (x) . (12)

Note that in the argument we collectively refer to both spa-
tial coordinates by x. Writing the usual Poisson bracket
(PB) of the canonical pair

{
ψ(x),Π†(x′)

}
= δ2(x−y) , (13)

and using the Faddeev–Jackiw technique [61] we get the
basic bracket,

{
ψ(x), ψ† (x′)

}
=−

i

h̄

(
1+
1

2h̄
mgη

)
δ2 (x−x′) .

(14)

This is the non-standard form of the PB relation, and as
such it indicates that ψ cannot represent the basic field
variable. Following a physically trivial field rescaling, (6),
we get the usual PB structure:

{
ψ̃(x), ψ̃† (x′)

}
=−

i

h̄
δ2 (x−x′) , (15)

which justifies our earlier argument that instead of the ori-
ginal fields ψ one should choose the rescaled field variables
ψ̃ and ψ̃† as the canonical pair of fields.
The Hamiltonian density is worked out using (5)

and (12), and we have

H =Πψψ̇−L

=−
h̄2

2m
ψ†∂2i ψ+mgψ

†xψ+
i

2
mgθψ†∂yψ , (16)

and, rewritten in terms of the rescaled fields ψ̃, ψ̃† and the
mass m̃, it becomes

H (x) =−
h̄2

2m̃
ψ̃†∂2i ψ̃+ m̃g

(
1+η

m̃g

h̄

)
ψ̃†xψ̃ , (17)

where the last term in (16) is absorbed in ∂2y as usual (9).
This Hamiltonian density generates the time evolution of

the system, thus:

˙̃
ψ =
{
ψ̃ (x) ,H (x′)

}

=−
i

h̄

[
−
h̄2

2m̃
∂2i + m̃g

(
1+η

m̃g

h̄

)
x

]
ψ̃ , (18)

which is the same as our Lagrange field equation (11).

3 Reduction to first quantized theory

So far we have been dealing with the second quantized
formalism, where ψ̃ was the basic field variable of the the-
ory. The aim was to impose non-commutativity in the
time-space sector and study how it affects the system.
We found out that the only non-trivial change in the
Schrödinger equation indeed originates from the space-
time non-commutativity. Specifically, it shows up only
in the direction of the external gravitational field g =
−gex. This result is in conformity with [42–44], where
it is shown that it is momentum non-commutativity, not
space coordinate non-commutativity, that shows up in first
order computations. In [42–44], along with spatial non-
commutativity, momentum space non-commutativity has
been included as well. However, the treatment of these ref-
erences essentially leaves a gap in the analysis, which we
fill in here. Since first and second quantized formalisms are
equivalent as far as Galilean systems are concerned, in the
sequel of this letter we carry out an equivalent NC quan-
tum mechanical analysis in the first quantized formalism.
In the first quantized version of the theory the Schrö-

dinger field equation (11) or (18) will be treated as the
quantum mechanical equation of motion, and the earlier
field variable ψ̃ will be interpreted as the wave function.
This is a quick and simple but standard procedure to re-
duce the field theoretic setup to one-particle quantum me-
chanics as has been illustrated in [56] for a general external

potential. We begin by checking that ψ̃ does have an inter-
pretation as probability amplitude and satisfies the conti-
nuity equation

∂0j0+∂iji = 0 (i= 1, 2) , (19)

with the usual expressions for the probability density j0
and the probability current ji in terms of ψ̃. From (18) we
easily read off the Hamiltonian:

H =H0+H1 =
1

2m̃

(
p2x+p

2
y

)
+ m̃gx+η

m̃2g2

h̄
x .

(20)

Note that the NC effect in the ordinary part H0 is hid-
den in the mass and field redefinitions (6) and (8). Such
rescalings are only viable in a region of space-time where
the variation of the external field is negligible. Since the re-
sults we have derived are to be compared with the outcome
of a laboratory-based experiment, we can safely assume
a constant external gravitational field throughout.
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Before proceeding with the Hamiltonian (20), we should
note that even if the variables in the commutative equiva-
lent model are commuting it is not obvious that the usual
Hamiltonian procedure could produce the dynamics with
respect to non-commuting time. To first order in the NC
parameter it has been shown in [50] that time-space non-
commutativity emerges from a duality transformation, and
Hamiltonian analyses are identical for the original theory
(with non-commutativity in the spatial sector only) and
its dual containing space-time non-commutativity. Such an
approach has been shown to lead to a reasonable outcome
in [52]. Following these references, we propose to carry out
our analysis to first order in η and assume the applicabil-
ity of the usual Hamiltonian dynamics for the commutative
equivalent model.
Since we expect that the time-space NC parameter is

rather small at the quantummechanical level, the last term
in (20) represents a perturbation H1 to the usual gravi-
tational quantum well scenario described by H0. We now
briefly review the ordinary quantum well problem, its so-
lutions and the experimental results [39, 40] before any fur-
ther discussion of the NC extension.

3.1 Ordinary gravitational quantum well

The first two terms in (20) form the commutative Hamilto-
nian H0 of the gravitational well problem, which describes
the quantum states of a particle with mass m̃ trapped in
a linear potential well, in this case a gravitational well.
The system’s wave function can be separated into two
parts, corresponding to each of the coordinates x and y.
Since the particle is free to move in the y-direction, its
energy spectrum is continuous along y and the correspond-
ing wave function can be written as a collection of plane
waves,

ψ̃(y) =

∫ +∞
−∞

g(k)eiky dk , (21)

where the function g(k) determines the shape of the wave
packet in phase space. The analytical solutions of the
Schrödinger equation in the x-direction, i.e. the solu-
tions to the eigenvalue equation H0ψ̃n = Enψ̃n, are well
known [62]. The eigenfunctions corresponding to x can be
expressed in terms of the Airy function φ(z),

ψn(x) =Anφ(z) , (22)

with the eigenvalues determined by the roots of the Airy
function, αn, with n= 1, 2 . . . ,

En =−

(
m̃g2h̄2

2

)1/3
αn . (23)

The dimensionless variable z is related to the height x by
means of the following linear relation:

z =

(
2m2g

h̄2

)1/3(
x−
En

m̃g

)
. (24)

The normalization factor for the nth eigenstate is given
by

An =

[(
h̄2

2m2g

) 1
3
∫ +∞
αn

dzφ2(z)

]−12
. (25)

The wave function for a particle with energy En oscil-

lates below the classically allowed height xn =
En
m̃g , and

above xn it decays exponentially. This was realized exper-
imentally by Nesvizhevsky et al. [39–41] who observed the
lowest quantum state of neutrons in the earth’s gravita-
tional field. The idea of the experiment was to let cold
neutrons flow with a certain horizontal velocity (6.5m s−1)
through a horizontal slit formed between a mirror below
and an absorber above. The number of transmitted neu-
trons as a function of the absorber height is recorded, and
the classical dependence is observed to change into a step-
wise quantum mechanical dependence at a small absorber
height. Their results and a comparison with the theor-
etical values are given below. The experimentally found
value of the classical height for the first quantum state
is

xexp1 = 12.2±1.8(syst.)±0.7(stat.) (µm) . (26)

The corresponding theoretical value can be determined
from (23) for α1 =−2.338, yielding

x1 = 13.7 µm . (27)

This value is contained in the error bars and allows for
maximum absolute shift of the first energy level with re-
spect to the predicted values:

∆Eexp1 = 6.55×10−32 J = 0.41 peV . (28)

The values of the constants taken in these calculations are
as follows:

h̄= 10.59×10−35 J s

g = 9.81m s−2

m̃= 167.32×10−29 kg . (29)

3.2 Analysis of the perturbed energy spectrum

Going back to the effective NCQM theory, we now analyze
the perturbed system (20). The perturbative potential is
given by

H1 = η

(
m̃2g2

h̄

)
x . (30)

Interestingly, the occurrence of this perturbation term is
a direct manifestation of time-space non-commutativity.
This enables us to work out an upper bound for the time-
space non-commutative parameter. Following the prescrip-
tion of [42], we can demand that the correction due to (20)
in the energy spectrum should be smaller than or equal to
the maximum energy shift allowed by the experiment [39–
41].We work out the theoretical value of the energy shift in
three independent ways.
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3.2.1 Numerical method

First, we take the numerical approach similar to [42] and
calculate the leading order energy shift of the first quantum
state. It is just the expectation value of the perturbation
potential, given by

∆E1 = η
m̃2g2

h̄

∫ +∞
0

dxψ̃∗1(x)xψ̃1(x)

= η
m̃2g2

h̄

[(
2m̃2g

h̄2

)− 23
A21I1+

E1

m̃g

]
, (31)

where the integral I1 is defined by

I1 ≡

∫ +∞
α1

dzφ(z)zφ(z) . (32)

The values of the first unperturbed energy level E1 are
determined by (23) with α1 =−2.338:

E1 = 2.259×10
−31 (J) = 1.407 (peV) . (33)

The normalization factor A1 is calculated by (25). The in-
tegrals in (25) and (32) were numerically determined for
the first energy level:

A1 = 588.109 , I1 =−0.383213 . (34)

The first order correction in the energy level is given by

∆E1 = 2.316×10
−23η (J) , (35)

Comparing with the experimentally determined value of
the energy level from (28), we found that the bound on the
time-space NC parameter is

|η|� 2.83×10−9m2 . (36)

3.2.2 WKB method

Avoiding numerical methods, one can analyze the energy
spectrum using a quasiclassical approximation. The po-
tential term in the unperturbed Hamiltonian H0 in (20) is
linear, and simply using the WKB method suffices. The
first energy level is given by the Bohr–Sommerfeld formula:

E1 =

(
9m

8

[
πh̄g

(
1−
1

4

)]2)13
(37)

= α1g
2
3 , n= 1, 2, 3 . . . , (38)

with α1 =
(
9m
8 [πh̄(1−

1
4 )]
2
) 1
3 . This approximation gives

nearly the exact value for the first energy level,

E1 = 2.23×10
−31 (J) = 1.392 (peV) , (39)

to be compared to (33). Since the perturbation term H1
in (20) is also linear in x, we can combine it with the poten-
tial term and rewrite the potential term as follows:

V (x) = m̃g′x= m̃g

(
1−
ηm̃

h̄

)
x . (40)

Now using the modified acceleration g′ from (40) in (38),

the approximate shift in the energy value is obtained by a
first order expansion in η:

E1+∆E1 = α1g
′ 23 = α1g

2
3

(
1−
ηm̃g

h̄

) 2
3

= α1g
2
3

(
1−
2ηm̃g

3h̄

)

=E1−η

(
2E1m̃g

3h̄

)
. (41)

Note that in [44] a similar modification of the gravitational
acceleration has been made to accommodate the perturba-
tion term in the potential. Using the values of m̃, g, h̄ and
E1 from (29) and (39), we calculate the energy shift ∆E1:

∆E1 = 2.304×10
−23η (J) . (42)

Again, this is comparable with (35). So we get nearly the
same upper bound on the time-space NC parameter as in
(36) by comparison with the experimental value (28):

|η|� 2.843×10−9m2 . (43)

3.2.3 Virial theorem method

Another simple analytical approach to calculate the energy
shift ∆E1 is to use the virial theorem [63], which implies
〈T 〉= 1

2 〈V 〉, where T and V are the kinetic and potential
energies, respectively. Hence the total energy is given by
E = 3

2 〈V 〉. The gravitational potential is V = m̃gx, which
gives

〈x〉 =
2E

3m̃g
. (44)

Now the perturbation term is

H1 = η

(
m̃2g2

h̄

)
〈x〉 . (45)

Here using (44) we find the energy shift in the first energy
level as

∆E1 =−η

(
2E1m̃g

3h̄

)
, (46)

which reproduces the same expression for ∆E1 as derived
in (41). Hence, the upper bound on η, using the virial theo-
rem method, is exactly the same as in (43).
This concludes our analysis of the perturbed energy

spectrum of the gravitational quantum well problem. This
analysis leads to the evaluation of an upper bound on the
time-space NC parameter in three independent methods.

4 Comparison with existing results

Now that we have an order of magnitude estimation for
the time-space NC parameter it is instructive to enquire
whether it is in conformity with the estimates of the other
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NC parameters, reported earlier [42–44]. In [42] the upper
bound on the fundamental momentum scale was calculated
to be

∆p� 4.82×10−31 kgm s−1 . (47)

Since E ≈
p2y
2m̃ , we have

∆E ≈
py

m̃
∆py = vy∆py � 31.33×10−31 kgm2 s−2 .

(48)

Here, we have used the value of vy = 6.5m s
−1 used by the

GRANIT experiment group. Using this value of ∆E in the
time–energy uncertainty relation ∆E∆t≥ h̄, we find

∆t≥
h̄

∆E
= 3.38×10−4 s . (49)

Hence, the uncertainty in the time-space sector can be cal-
culated using the results of [42] as

∆x∆t∼ 3.38×10−18ms , (50)

where, following [42], we have taken ∆x
 10−15m. On the
other hand, in the present letter we have derived the upper
bound on the parameter η:

η =−i[x1, x0]� 2.843×10−9m2 . (51)

Restoring the c-factor in (51), we write the commutator in
terms of the variables x and t:

−i[x, t] =
η

c
=� 9.51×10−18ms . (52)

Using the generalized uncertainty theorem [64] for the
commutation relation in (52), we can write

∆x∆t≥
1

2

η

c
∼ 4.75×10−18ms . (53)

Interestingly, the value of the upper bound on the time-
space NC parameter as derived here turned out to be con-
sistent with the results of [42–44]. However, one should
keep in mind that this value is only meant in the sense of an
upper bound and not the value of the parameter itself.

5 Conclusions

In this letter we have obtained an effective NCQM descrip-
tion for the gravitational well problem starting from a NC
Schrödinger action coupled to an external gravitational
field. The effective commutative field theory is shown to
take the usual form, once the proper canonical pair of
field variables are identified by a Hamiltonian analysis. The
effect of the non-commutativity on the mass parameter
appears naturally in the process. We reinterpret this one-
particle field theory as a first quantized theory and obtain
an effective NCQMdescription for a particle trapped in the
earth’s gravitational field. Interestingly, we observe that

the external gravitational field has to be static and uniform
in order to get a canonical form for the Schrödinger equa-
tion up to η-corrected terms, so that a natural probabilistic
interpretation emerges.
The main object of our analysis is to study the grav-

itational quantum well problem, reducing it from a field
theoretic setting, so that time-space non-commutativity
may be included in a natural way. The singularly import-
ant outcome of our calculation is that it is the underlying
time-space sector of the NC algebra that is instrumental
in introducing non-trivial NC effects in the energy spec-
trum of the system to first order perturbative level. Follow-
ing [42, 43], we demand that the calculated perturbation in
the energy level should be less than or equal to the max-
imum energy shift allowed by the GRANIT experiment
performed at Grenoble [39–41]. This comparison leads to
an upper bound on the time-space NC parameter. This up-
per bound is shown to be consistent with the existing upper
bound for the fundamental momentum scale in the litera-
ture.
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